- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Abu-Ghazaleh, Nael (1)
-
Arikan, Kerem (1)
-
Farrell, Abraham (1)
-
Liu, David (1)
-
McMahon, Jack (1)
-
Ponomarev, Dmitry (1)
-
Williams, Barry (1)
-
Zhang, Williams (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract—Protection of cache hierarchies from side-channel attacks is critical for building secure systems, particularly the ones using Trusted Execution Environments (TEEs). In this pa- per, we consider the problem of efficient and secure fine-grained partitioning of cache hierarchies and propose a framework, called Secure Hierarchies for TEEs (TEE-SHirT). In the context of a three-level cache system, TEE-SHirT consists of partitioned shared last-level cache, partitioned private L2 caches, and non- partitioned L1 caches that are flushed on context switches and system calls. Efficient and correct partitioning requires careful design. Towards this goal, TEE-SHirT makes three contributions: 1) we demonstrate how the hardware structures used for holding cache partitioning metadata can be effectively virtualized to avoid flushing of cache partition content on context switches and system calls; 2) we show how to support multi-threaded enclaves in TEE- SHirT, addressing the issues of coherency and consistency that arise with both intra-core and inter-core data sharing; 3) we develop a formal security model for TEE-SHirT to rigorously reason about the security of our design.more » « less
An official website of the United States government

Full Text Available